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The Adiabatic Thermal Explosion in a Small System: 
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A new model of the adiabatic thermal explosion with biomolecular reaction 
X+ X ~ A + A is proposed. The parameters of reaction are chosen such that 
the stochastic description predicts a transient bimodality of behavior. For the 
same system the nondeterministic character of the time evolution is confirmed 
by a molecular dynamics simulation. 
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1. I N T R O D U C T I O N  

The ad iaba t i c  the rmal  explos ion  seems to be an example  of a realist ic 
process  which exhibi ts  a t rans ient  b imoda l i t y  of behavior .  In  the first pape r  
on this subject,~ll a very s imple mode l  of the ad iaba t i c  the rmal  explos ion  

based  on the un imolecu la r  reac t ion  A ~ X was discussed.  The  s tochast ic  
descr ip t ion  of this process  (pure  mas te r  equa t ion  a p p r o a c h )  predicts  the 
high d ispers ion  of P ( X ,  t) (p robab i l i ty  d i s t r ibu t ion  of f inding a given 
n u m b e r  of molecules  of X for fixed t ime t). F o r  a special  choice of the 
pa rame te r s  of  explos ion  P ( X ,  t) has a doub le  m a x i m u m  for a per iod  of 
time, which means  that  different ways of  evo lu t ion  are  possible.  

However ,  the mode l  of  Baras  et al. ~1) conta ins  some i m p o r t a n t  sim- 
plifications. It is a ssumed  tha t  the system is h o m o g e n e o u s  and  the tern- 
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perature is uniform in space. This means that the relaxation of the system is 
instantaneous and then it is possible to neglect all the transport  processes 
(mass and energy) within it. The question of whether such an assumption is 
possible has not been discussed yet. 

The aim of this paper is to include the transport  processes in the 
description of the adiabatic thermal explosion. This is done by a molecular 
dynamics computer  simulation. Now the unimolecular reaction X ~ A  
seems to be too simple to be studied by molecular dynamics. In this paper 
we are therefore concerned with a slightly more realistic reaction, 
X + X ~ A + A. We assume that the molecules are hard spheres without 
any internal structure and we adopt  a three-level model for the chemical 
reaction. In the framework of our model the change of kinetic energy is the 
only kind of excitation of molecules after the reaction. 

The paper is divided into two parts. Section 2 we introduce a new 
model of adiabatic thermal explosion and we present the results of the 
stochastic analysis. The methods used there are closely connected to these 
of Refs. 1 and 2. The results of the molecular dynamics simulation of the 
time evolution for the same system are presented in Section 3. 

2. THE S T O C H A S T I C  M O D E L  OF THE A D I A B A T I C  T H E R M A L  
EXPLOSION W I T H  B I M O L E C U L A R  REACTION 

In this paper we are concerned with the bimolecular exothermic reac- 
tion X + X ~ A + A. The relative energies of X + X and A + A states are 
displayed in Fig. 1 (the so-called three-level model for chemical reaction). 
Here UA and UR denote, respectively, the activation energy and the heat of 
reaction for the direct reaction X + X ~ A + A. Of course the activation 
energy for the inverse reaction A + A ~ X + X is UA + UR and the heat is 
equal to - UR. Now let us consider a system of N o molecules of X at the 
temperature To at time t = 0. The temperature of the system is a function of 
time, since the reaction is exothermic. If we assume that the process is 
adiabatic (no exchange of energy with surroundings) and that the system is 
homogeneous, with the temperature uniform at every point of space, then 
the conservation of energy gives the following relationship between Nx,  the 
number of molecules of X, and the temperature T(Nx): 

No UR + 3kB ToNo = 3kB T(Nx)No + Nx UR (1) 

where kB is Boltzmann's constant. In the above equation the assumption 
that our system is composed of hard spheres has been used (Cv= 3kBNo). 
The assumption about  uniform temperature has been the basis of many 
recent papers on the adiabatic thermal explosion (for example, Refs. 1-3). 
The method presented in the nexxt section does not require it. 
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Fig. 1. The  three-level model  of chemical  reaction.  

The temperature dependence on the reaction rate k (T)  may be 
described by the Arrhenius law: 

k(T) ~ exp [ - (activation energy)/kB T] (2) 

The transition probabilities for the direct reaction # and for the inverse 
reaction 2 are given by the following formulas 14/ 

#(Nx)= ,u ({Nx,  NA} ~ {Nx--2 ,  N A + 2 } )  

Nx(Nx -- 1 ) UA 
=kDo 2 exp kBT(Nx) 

Nx(Nx - 1 ) 
- 2 ko T(Nx) (3a) 

2 ( N x ) = 2 ( { U x ,  NA} ~ {Ux +2 ,  X a - 2 } )  

NA(NA -- 1 ) UA + UR 
= klo 2 exp - kB T(Nx ) 

(No - Nx)(No - Nx - 1 ) UA + UR 
=kl~ 2 exp kBT(Nx) 

N A ( N  a - 1 ) 
- 2 k , T ( N x )  (3b) 
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For the set of parameters for adiabatic thermal explosion used in this 
paper (No = 100, To = 200 K, UA = 1200kB * deg, UR = 6000kB * deg) the 
functions #(Nx/2) and 2(Nx/2) are displayed in Fig. 2. The values of kx 0 
and ko0 [Eqs. (3a) and (3b)] have been set to unity. 

Having the values of # and 2, we are able to solve the master equation 
for P( Y, t). In the discussed case it reads 

dP( Y, t) 
dt 

- - =  - [#( Y) + Z( Y)] * P(Y, t ) + # ( Y + 2 ) *  P(Y+ 2, t) 

+ 2 ( Y - 2 ) .  P ( Y - 2 ,  t) (4a) 
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Fig. 2. The transition probabilities for the direct (#) and the inverse (2) reactions. 
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Fig. 3. The time evolution of the P(X, l) according to the stochastic method. 



where (0 < Y< No) 

dP(No, t) 
dt 

dt 

- # (No) ,P (No ,  t ) + 2 ( N o - 2 ) , P ( N o - - 2  ) (4b) 

dP(O, t) 
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The initial condition is P ( K 0 ) = 3 y ,  N0. As the set of equations 
(4a) (4c) has nonlinear coefficients (due to the nonlinear factor in the 
Arrhenius law), a numerical method has been applied. The time evolution 
of P(Y, t) is presented in Fig. 3. As in the case of a unimolecular 
reaction,(~ 3) a double maximum of the probability distribution, which 
corresponds to a transient bimodality, canbe  seen. 
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Fig. 4. The number of molecules of X as a function of time for different molecular dynamics 
simulations. 



Adiabatic Thermal Explosion in a Small System 335 

(b) lOO;-~ 
9 0 -  

so~ 
70 

60 

50 

46 

3O 

2O 

10 

i ~ i = _ _ ~  i i _ i _ _ _  
128. 256. 384. 512. 640. --" 768. 896. 

100i 
b 

90 ~ 

8C 

7G 

6G 

5O 

40 

3O 

20= 

lO ~ 
0~ 

0 
i i J i i i i 

128. 256. 384. 512. 640. 768. 896. 

(c) 1~176 i 
90) 
90~ 

I 

70 L 

6o~ 

I 40 

30 

20 

10 

ol 
128. 256. 384. 512, 640. 768. 896, 

Fig. 4 (continued) 



336 Gorecki and Gryko 

3. THE RESULTS OF M O L E C U L A R  D Y N A M I C S  S I M U L A T I O N  
OF AN A D I A B A T I C  T H E R M A L  EXPLOSION 

As pointed out in the Introduction, the problem of energy transport in 
a system that exhibits an adiabatic thermal explosion was not discussed in 
previous papers/1 3) To test if the transport processes have an important 
influence on the behavior of the system described in Section 2, we decided 
to study the time evolution with the use of molecular dynamics. 

The standard molecular dynamics technique for hard spheres has been 
applied. The model for a reactive collision is the same as used by Xystris 
and Dahler. (6/ Every collision of A with X is regarded as elastic, whereas 
the collisions of X with X and of A with A are reactive when the kinetic 
energy associated with the relative motion along the line of centers exceeds 
the activation energy. In such a case the reaction heat changes the com- 
ponent of velocity along the line of centers. A similar molecular dynamics 
technique was used by Chou and Yip i9~ in their work on the temperature 
profile in a nonadiabatic, two-dimensional system with an exothermic reac- 
tion. 

A system of 100 molecules has been studied. The molecular diameter 
(5 ~)  has been chosen arbitrarily. As we are interested in the gas-phase 
reaction, the density should be very small. The results are presented for two 
different packing densities: t/=0.052, box length 5 0 ~  (Fig. 4) and 
r/=0.00042, box length 250 ~, (Fig. 5). The initial positions of molecules 
were randomly distributed in space and the initial velocities were chosen 
from the Maxwell distribution for the temperature To = 200 K. The system 
was thermalized for more then 2000 collisions (only elastic collisions have 
been allowed). Such a method of thermalization seems to be sufficient to 
reach thermal equilibrium, because it is known that only a few collisions 
per molecule are needed to thermalize a system of hard disks. (7) To test if 
the velocity distribution describes the system in thermal equilibrium we 
have compared the number of molecules with energy greater then an 
assumed value with the value obtained assuming the Maxwell distribution. 
Good agreement (up to fluctuations) between these two numbers was 
obtained. Moreover, for thermalizations longer then 200 collisions no 
systematic approach toward the Maxwell distribution was observed. After 
the thermalization we allowed the reaction to start. 

The time evolution of the system after different thermalization times is 
shown in Fig. 4. Although all the initial states are equivalent from the ther- 
modynamic point of view, we can see that the time evolution is not unique. 
The difference is caused by the coupling between fluctuations and the 
dynamics of the system. It can be noticed (see Fig. 2) that the characteristic 
time ( ~ #  l) in the initial period, where the reaction is very slow, is many 
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Fig. 6. Comparison of the transition probabilities for the direct reaction; (--) Eq. (3); (---) 
molecular dynamics simulation; (a) kD0 = const, (b) koo ~ x/~.  

times longer then the characteristic time in the explosive regime. There is a 
s trong correlat ion between fluctuations in the initial period and the time 
evolution. After a few reactive collisions the reaction speeds up and the 
evolution is almost  deterministic. But the dispersion of the transit ion time 
in the initial period is large compared  with the time of explosion. For  25 
simulations we found that  the transit ion time from the state Nx = 100 to 
the state Nx = 90 is tl = 4.7 E-11 sec and its dispersion is ~j = 3.9 E-11 sec. 
This high value of dispersion is a consequence of the fact that  the 
probabil i ty of a single reaction is described by the Poissonian distribution, 
where the average is equal to the dispersion, and it is not  reduced when a 
large statistical sample is considered. On  the other  hand, an average time of  
transit ion from Nx = 90 to Nx = 30 is t2 = 1.8 E-11 sec with the dispersion 
cr2=3 E-12sec.  The dispersion al  is larger than t2 and therefore the 
behavior  of the system is nondeterministic.  Our  result means that  the 
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inclusion of a realistic mechanism for heat transport does not change the 
qualitative description of an adiabatic thermal explosion. This is not 
surprising, because both effects, heat transport and chemical reaction, are 
connected with collisions. 

The transition probabilities for the direct reaction obtained from the 
molecular dynamics simulations are compared with that used in the 
stochastic model [Eq. (3)] in Fig. 6 (they are denoted by dotted and solid 
lines, respectively). In Fig. 6a one constant value of the parameter kDo 
[Eq. (3)] was adjusted to fit the simulation data. It corresponds to the 
assumption that the transition probability depends on the temperature by 
the Arrhenius factor only and kD0 is constant. This assumption was used in 
previous papers on the thermal adiabatic explosion (1 3) and in the 
calculations presented in Section 2. However, the molecular dynamics 
approach suggests that the more realistic model should take into account 
the changes of kDo with temperature. This can be done according to the 
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well-known formula for the number of collisions per unit time in a hard- 
sphere system, (1~ 

kD0 = 4d2(47~kB T/m)1~2 (5) 

where m and d denote, respectively, the mass of a molecule and its 
diameter. Figure 6b shows a comparison between simulations and Eq. (3) 
when the factor ~ is included in kD0. The scale is chosen such that for 
N o=  100 the transition probability of both methods is equal to 1. The 
agreement is better then that presented in Fig. 6a. However, this additional 
factor has no significant influence on the qualitative description of the 
process in the stochastic method. It increases the difference of the time 
scales between the initial period and the explosive regime and if the 
transient bimodality is observed for the model with kD0= const, it also 
will be observed when kD0 = TcD0x/T. 

Our molecular dynamics program uses periodic boundary conditions, 
which are justified for a system in equilibrium, but which in the non- 
equilibrium case can give additional stirring. To verify whether this 
additional energy transport is important for the results of the model, we 
have carried out simulations for a system characterized by a much lower 
density, where this stirring is much more important. If we compare the 
master equation (4a)-(4c) with the phenomenological equation for the 
reaction X + X ,-~ A + A, 

dnx/dt= -kD( T) * n~ + k,( T) * ( n o -  nx) 2 (6) 

where n o and nx are the initial density of molecules and the density of 
molecules of X, respectively, we can find that kD0 and k~0 in the master 
equation scale like V -1, where V is the volume of the system. Therefore, if 
the influence of the transport processes connected with the periodic boun- 
dary conditions on the behavior of our system is negligible, the results of 
molecular dynamics simulation for a different density mo should be the 
same when the time is rescaled by the factor no/mo (when we neglect the 
dependence of kD0 on density, <8~ which is not very important for low den- 
sities). We have done a molecular dynamics simulation of another system 
at a density 125 times lower. Figure5 displays the time evolution in 
rescaled time. It may be noticed that these results are very similar to those 
of Fig. 4, which confirms the assumptions of the stochastic model. 

4. C O N C L U S I O N S  A N D  D I S C U S S I O N  

We have presented two different approaches for the description of an 
adiabatic thermal explosion: a stochastic method and a method based on 
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molecular dynamics. The results of both methods are in qualitative 
agreement. The fluctuations in the initial period have a large influence on 
the time evolution, and the behavior of the system is nondeterministic 
because the dispersion of P(X, t) is high. Our results show that the 
inclusion of transport does not change the qualitative description of the 
adiabatic thermal explosion and so the assumptions of the stochastic model 
are justified; however, more realistic stochastic models should take into 
account such effects as the change of kD0 (in our case collision frequency) 
with temperature. 

Some information on the qualitative agreement of both methods can 
be obtained by comparing the transient probabilities predicted by them 
(Fig. 6). Higher accuracy can be achieved, but the computer time required 
is very large. 

The set of parameters of the adiabatic thermal explosion has been 
chosen rather arbitrarily, but there are some reasons justifying the choice. 
The number of molecules used in the simulation is strongly limited by the 
speed of the computer, since computing time increases at a rate greater 
then linearly with it. For the bimolecular reaction the factor connected with 
the number of molecules in the formula for transition rate /~ [Eq. (3)] is 
more important than that for the unimolecular reaction. Therefore, a large 
thermal effect of reaction is necessary to increase /~ when the number of 
molecules is decreasing. The ratio of the activation energy and the average 
thermal energy of the molecules in the system cannot be too large without 
causing the computer to waste a great deal of time waiting for the first 
reactive collision. Our the other hand, when the initial temperature is too 
high, the system does not exhibit transient bimodality. For the calculations 
presented here a quite low initial temperature (To = 200) was chosen. This 
does not affect the properties of the hard-sphere system, since they depend 
on the density. A similar effect may be expected at higher temperature 
when the activation energy and the reaction heat are rescaled by a factor 
corresponding to the ratio of temperatures. The points listed above were 
taken into account when the set of parameters for the reaction was chosen. 

The molecular dynamics technique seems to be a good tool for 
simulating processes far from equilibrium in small systems. Unlike the 
master equation approach, this method does not involve the concept of the 
temperature of a transient state, which can have no meaning. We intend to 
apply this technique to the description of more realistic reactions. 
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